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INTRODUCTION 

The methods reported are directed at developing engineering equa- 

tions as a function of a great many geometric and flow variables for pre- 

dicting the fluctuating pressure environments for future vehicles. This 

work is complicated by the large quantities of reduced fluctuating press- 

ure data collected from numerous test programs that must be digested in 

order to develop these engineering equations. In this respect, the dig- 

ital computer, with its tremendous storage and rapid decision-making cap- 

abilities, should be employed. 

Before the curve fitting programs can be implemented, the character- 

istics of the reduced input data must be known. 

question but also to answer questions of data handling, direct and indi- 

rect cross-correlation results are presented as experimental data. 

experimental curves show a smooth transition, for instance, as a function 

of transducer separation and give promise that a combination of cross- 

correlation and cross pcwer spectral density results can effectively serve 

as’input to diagnostic programs. 

duced from the MSFC/Ames generalized protuberance tests. 

Largely to answer this 

The 

In this case, microphone data was re- 

In order to develop universal equations, the experimental data must 

first be non-dimensionalized, 

whether to non-dimensionalize on a statistical basis or on geometric and 

The question immediately put forth is 
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flow bases. 

cross-correlation and cross power spectral density functions. 

Section (2.0) discusses a number of ways to normalize the 

The flow processes are Jsncwn to be radically different in the att- 

ached flow, separated flow and oscillating shock regions. Trial analyt- 

ical equations with familiar forms are advanced in Section (3.0) for  the 

first two flow processes, as it applies to the 10 inch model test data. 

The experimental curves are uniform and lead one t o  suspect that these 

equations can be expanded to apply to a limited range of geometric and 

flow conditions. 

Throughout this work it was found advantageous to consider the same 

For one, the microphone results, in both the time and frequency domain. 

characteristic dimension of time, which is present in the ordinate of 

the cross power spectral density function, is not prssent in the cross- 

correlation function. The relative advantages and disadvantages for the 

two results are discussed in Section (4.0) and the equation utiliLed for 

inverse Fourier transforming the cross power spectral density functions, 

is developed in Section (5.0). 

The hybrid cross-correlation sys tern computes cross-correlation and 

cross power spectral density outputs using the approximations also pre- 

sented in Section (3.0). Periodic time functions were treated so that 

one can how beforehand the proper result for the Fourier coefficients. 
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Section (6.0) discusses the data analysis procedures as they apply to  

the curves presented. 

correlation curves are presented are shown in  the matrix grids. 

Further, the tape tracks for which the cross- 

The tabulations f o r  the cross power spectral densities are present- 

ed in  Data Report No. 505 and the tabulations for  the transformed cross 

power spectral densities are presented i n  Data Report No. 506. 
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OPTIONS FOR ?iiE NORMALIZATION OF THE 

X-PSD AN! TIE ChOSS-CORRELATION 
---I__ 

Normalization of the cross-correlation function or  the cross power spectral 

density can be based on either physical or statistical concepts. 

power spectral density is the Fourier transform of the cross-correlation, any 

non-dimensionalization based on physical considerations which applies to the  cross- 

correlation theref ore applies to the X--PSD. 

one accounts for the extra dimension of time introduced with the Fourier trans- 

form, in dividing the X-PSD by an appropriate characteristic time. 

one needs two physical quantities that characterize the physical process t o  corn- 

plete the normalization. of the two functions. 

Since the cross 

This statement holds true, provided 

In this case, 

The present data were derived from pressure records and therefore, the cross- 

correlation function has the dimension of pressure squared. 

cross-correlation, R ~ ( T ) ,  by the square of the free-stream dynamic pressure, q , 
one obtains a dimensionless quantity, Rw(T)/q2 , which should behave like a press- 
ure coefficient, In supersonic flow, all pressure coefficients exhibit the Mach 

Number dependence, cp - (M-l)-2. Therefore, one should find R v ( ~ ) / q 2  - (M-1)'2. 

Stated in another way, the dimensionless group, (M~r-1)~ %(T)/q2 , should show a 
very weak Mach Number dependence, except for M w 1 and situations where the flow 

undergoes a drastic change in the vicinity of a particular pressure transducer 

(due t o  separation, movement of. a local shock wave, etc.) , as the Mach Number is 
changed. 

If one divides the 
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Another physical quantity that has been used for  non-dimensionalizing the 

autocorreletion of a random pressure signal is  the wall shear stress, T~ , de- 

veloped by the boundary layer a t  the location of the pressure transducer being 

considered. 

should be consi6sred and the appropriate non-dimensionalization would becomc 

RXy(T)/ Twx Twy* However, there is  no reason to  believe that this  form of non- 

dimensionalization for  Rxy(.r) is any less Mach Number dependwt than the form, 

( M - l ) 2 R ~ ( ~ ) / q 2 ;  and since .rW is d i f f i c  '.t t o  calculate accurately, besides being 

rarely measured along with pressure data, there is no advantage i n  using the sec- 

ond form when reducing data for  engineering purposes. 

For the case of the cross-correlation function, two values of T~ 

I t  would therefore be useful t o  plot (M-1)2Rv(~)/q2 versus T when attempt- 

ing to  correlate supersonic data for  different Mach Numbers or; i f  greater detai l  

is desired i n  a plotted display, it would be very instructive t o  consider an iso- 

metric plot of Rw(T)/q2 i n  the space of T and M. The u t i l i t y  of an isometric 

plot in the space of T and M would be to  show, for example, how the communica- 

tion between two points changes, as the structure of the flow changes with the 

Mach Number. That is, i f  two points x and y are located in  a region where the 

boundary layer is attached with y downstream from x, then R v ( ~ )  should show corn- 

elation principally for  positive T, since most of the disturbance would propagate 

as a result  of convection. However, i f  an increasing Mach Number causes the flow 

to  become separated, with the possibility of reversing the direction of local con- 

vection, then correlation for  negattve T could appear and this would be vividly 
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exhibited in  such a plot. Likewise, wA isometric plot i n  the space of z ,and x 

would yield .similar information concerning the spatial  distribution a t  a fixed 

M, 

A characteristic time is  needed, i n  addition t o  a characteristic pressure, 

if one is to mn-dimensionalize the X-PSD or,  if non-dimensionalization of z 

(or w) is t o  be considered. The characteristic time frequently used with the 

power spectral density is the rat io  6/U , where 6 is the bomdary layer dis- 

placement thiclcness and U is the velocity a t  the outer edge of the boundary layer. 

Since the calculation of 6 would be diff icul t  for  a complicated body or even d i f f -  

icul t  to  define for  a separated flow, the time 6/U is useful only for  restricted 

application. 

the X-PSD scales with model size, just  as 6 scales with model size. 

In addition, i f  one scales the X-PSD with 6/U , th i s  implies that  

Another characteristic time frequently used is the time defined by h./U , 
where h is a dimension such as a -tep height. 

size, one would conclude, i n  th i s  case, that  the X-PSD scales directly w i t h  model 

size, which contradicts the conclusion drawn above (that it scales with 6) since 

6 and h do not scale the same with model size. Here one can see that the selec- 

tion of a meaningful. characteristic time can be d i f f icu l t  aqd must be done on a 

For a fixed ra t io  of h to  model 

rational basis, since it is a very important quantity for  scaling data with model 

size or to  fill sca le  vehicles. Although data could be cbtained -I mly a l i m -  

i ted range of model sizes, it would be very important that such a 

ducted so that a rational characteristic time could be selected. 

be con- 
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Normalization based on s t a t i s t i ca l  concepts leads to  a somewhat different 

treatment of the data. 

ivation. 

This can best be seen with the aid of' the following der- 

Consider, two periodic functions, x(t) and y ( t ) ,  w i t h  period 2T. For 

even functions of time, one can write 

where the notation %(x) and c,(y) is used t o  represent the constmt coefficients 

in  the series for  x( t )  and y( t )  respectively, The Fourier transfom of the sig- 

nal x(t) is defined by the equation 

00 - ju t  
x(w) = 1 -00 x(t)  e d t  9 

and the Faurier transform of the cosine function is given i n  the foliowing table: 

where S(w - yl) is the delta functi.on located at  w, 

as a result  of the fact thet we are only considering positive frequencies; other- 

The factor of two arises 

wise, one must locate the delta function a t  w = rtwn. 

form the Fourier transform of ' the  two signals x(t) and y( t )  and obtain 

Using the table, we can 

, 

(2.3) 
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Multiplying X(w) by .the cog‘ -x conjugate m, we have 

Since the product of two delta functions is non-zero only fo r  Wk = 

pression reduces to  a single summation yielding 

, the ex- 

The cross power spectral density for  the two signals x( t )  and y( t )  is de- 

fined t o  be 

Because of cancellation below, we c m  lunp all  terms preceding the summation sign 

into a single constant K ana write 

The power spectra for x(t)  and y( t )  respectively are therefore given by 

The to ta l  power contained i n  the signal x(t)  is given by the area under the curve 

for  the power spectral density, @,(LO), i.e. 
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Since the area under the delta function in  w space is defined t o  be 1 / 2 ~  , 
the above equations yield the results 

a, (3) 

Because the X-PSD reduces t o  the PSD f o r  the case x( t )  = y( t ) ,  it is natural to  

consider the quantity Jon" oV' 

powers, as the normalizing factor for the cross power spectral density, Q 

From the above expressions, we therefore obtain for  the normalized X-PSD, 

, i.e. , the geometric mean of the two to ta l  

(w). Xy 

the relation 

co a, 

where the coefficient K has been cancelled as mentioned above. 

Another candidate quantity f o r  normalizin2 the cross pclwer spectral density 

can be inferred as a natural extentior, t o '  the relations given by Equation (3).  

That is, i f  we compute the to ta l  area under the curve, + (w) , without regard 

t o  phase zrngle, we can introduce the to ta l  cross power 
Xy  
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B a companion relation to  urn2 and Q . Using the definition, w 

we obtain a second normalized cross power spectral density given by 

For the special case where the signals x(t) and y( t )  are the same, the two ... 
normalized quantities, (w) and Q *(w), become identical, i.e. v Xy  

and they satisfy the unit area relation 

which is the desired definition of normalization for the power spectral density 

function 

An additional useful property of the two normr~lized'qumtities can be found 

by co. sidering the special case where both x(t) and y(t)  are single cosine waves 
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with frequency % ard phase difference % . We then have frcm Equations (4) and 

( 6 ) ,  €or the case n = k, 

If we define. g - c i  t o  be the integrated quantity over the band, centered a t  q, 

we then &tair 

which is equs t o  unity if  = 0 (no phase difference), equal to  +i for  $1; = ~/2, 

and equal t o  -1 for  @k = T. Both normalkecl cross power spectral density functions 

defined here therefore exhibit the phase relation between x( t )  and y( t )  when they 

consist of a single and identical frequency. 

The cross-correlation function, Rav(~) ,  is obtained from the inverse Fourier 

transform of QXy(w). 

t e r n  of the form e'i@n S(w-qJ,  the table shows that the inverse transfmn of 

each term is simply a cosine tern and the expression f o r  R (T) becomes 

Since the above expression for Qw(u) consists of a sum of 

w 

For the case where x(t)  and y( t )  are the same function, the equation yields the 

expressions for the two autocorrelations, i.e., 

00 

R,(r) = X C a2,(x) cos(%.) 
75 n=o 
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The total power contained in each signal is obtained by setting T equal to zero in 

the respective autocorrelation function; thus we obtain 

as expected. Using the geometric mean of the total powers as the normalizing factor, 

the normalized 

Q(d = / a m  

cross-correlation becomes 

where the constant K / ~ I T  has been cancelled. 

00 m 

N 

It is quite obvious from the definition of %(T) that we recover the result 

n, 

k ( 0 )  *= %(o) = 1 

Hawever, in general we should not expect %(o) to be unity for %(x) # cn(y). 

the cross-correlation function is properly normalized, we must have 

If 

for all values of T, as well as for the special case where x(t) and y(t) are the 

same. This can be shown with the aid of the following device, Let the vectors 
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A and be defined by the components 

Therefore, both A and F are unit vectors and we have 

If we define the vector C' to be given by 

we see that the magnitude of c* is less than or equal to the magnitude of 

cause of the cosine term, i.e., 

be- 

I 

Theref ore, we have 

which shows that the magnitude of xhe normalized cross-correlation function is 

always less than or equal to unity. 
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One could also consider the dimensionless quantities 

which are ratios t o  the to ta l  power in  the signals x(t)  and y( t )  respectively, 

However, the magnitude of each of these expressions is not necessarily less 

than unity for a l l  values of T. 

tion 

This can be seen quite easily from the rela- 

N 

which shows that it can be greater than unity if  %(o) / h ( o )  > 1. 

this is also obvious physically. 

the signal y( t ) ,  the ra t ic  I%(T)  I / k ( o )  

ber divided by a small number and the rat io  can become large. 

Of course, 

That is, i f  most of the power is contained in  

consists of a relatively large num- 

As is evident from the above discussion, the number of options available for 

normalization of the X-PSD and the autocorrelation functions is quite large. And 

in each case, the normalization can be introduced on the basis of a very rational 

argument. 

questions one is interested in  answering. 

an early s ta te  of development where many of the questions of interest  to  engineers 

are yet to  be identified and fmnulated clearly. 

sirable to  display data in  more than one form, where s t a t i s t i ca l  concepts are 

stressed in  one case and gas dynamic concepts are stressed in  another, i n  order 

t o  maximize the interpretive value of a given se t  of data. 

Obviously, the manner in  which data is reduced depends on the kind of 

However, random data analysis is i n  

Therefore, it would be very de- 

(2.10) 
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For example, from a gas dynamic point of view, one would view the quantity 

Q(.c)/q2 as a kind of a pressure coefficient; and it is well h o r n  that, for a 

fixed Mach number, prgssure coefficients are rather insensitive to scale size, 

so that pressure coefficients obtained from wind-tunnel models can be applied 

almost directly to full scale vehicles. Here it would be of interest to learn 

whether the quantity R (.c)/q behaves in the same manner, with regard to scaling 

with model size, or whether it behaves quite differently due to its statistical 

property. 

w 

As mentioned in the first part of this section, a characteristic time is 

needed if one is to non-dimensionalize the X-PSD. 

establish for a complicated model and often it has been selected on an ad hoc 

basis. 

size, it would be desirable to identify the correct characteristic time that 

should be used, from data for which model size is varied. 

This quantity is difficult to 

Since this quantity is directly involved in scaling the X-PSD with model 

A question of vital importance to the understanding of data oil random press- 

ure fluctuations , concerns the distribution between generation, propagation and 
convection of random energy at each point, i.e., lamwing what fraction of the 

total m pr3ssure fluctuation at a given point is due to local generation and 

what. fraction is received from other points in a flow field can aid greatly in 

identifying and controlling the major sources of disturbances. 

correlation function is an ideal quantity for such a study and with suitable man- 

ipulation, this information could be readily obtainable. 

The cross- 

(2.11) 
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RECOGNITION OF PATTERNS IN THE EXPERIMENTAL DATA 

The groundwork can be prepared for discussing the experimental data by con- 

sidering several special cases for  which analytic expressions can be used to rep- 

resent the plotted correlation functions. The expression derived in the above 

section for the normalized cross-correlation function, namely, 

where 

can be recognized as a finite difference analog to the integral relation between 

%,(r) and QV(w) 
.w .w 

That is, %(T) is the inverse Fourier transform of @ 

N 00 iwr 

(w) xy 

Recognizing that 0 (w) is a cornpI.5~ numoer, the equation becomes 
X y  

03 
R ’  
v 

.w 

[a [w) + i@& (w)] [COSWT + i s h T J  &*r Rv(r) = & J 
2n -Q) 

N 

Since R 

non-zero part of the integral and t.:.i.t:e 

(r) must always be real, 5t:r a real process, we need only retain the 
X y  
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becomes 

where Aw is the width of the incremental frequency and wn is the center frequency 

a t  each incremental step. 

above, we see that the coefficients AnCn and the phase angles @n are obtained 

froa the real  and imaginary parts of the complex numbers, @ 

Comparing this  laz t  equation with the equation given 

(w ) . ~n 

When considering the autocorrelation function, tve have 

*I 00 

= - Aw C @,(wn) cos %T 
IT n=O 

(3) 

.y 

since %(T) is both a real and an even function, and therefore, @,(w) is also 

both real  h d  even. Thus we see that for  a l l  autocorrelation functions, we have 

the simple result  

A* = Aw Q,(wn) n -  
TI 

(4) 

When considering the cross-correlation function however, @n and A, Cn mst 
R I be obtained from Qw (wn) and QXy (ton) fo r  each individu-1 case. 

tributions for  the quantities A, Cn and +n, can be found by considering some 

Typical dis- 
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representative functional forms for f&(~). For example, Plot Numbers (14), 

(35) and (48), exhibit autocorrelations that can be represented by the form 

The Fourier transform of this function is 

$,(w) = 2a / (a2 + w 2 j  

and therefore we have for this case, erom Equation ( 4 ) ,  

= o  
+* 

which shows that each frequency component o f  the signal x(t) must vary like 

wn-l and no phase difference exists between the respective components. A 

slightly more complicated autocorrelation function, 

COSBT 9 
-4-d 

= e 

which would represent Plots 

A2n = @ { 
IT 

@n = 0 

showing a similar decay for 

(8), (27), (42), (64) and (93), yields the result 

1 + 1 ‘m * 
large frequencies 
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Several of the autocorrelation plots, such as Plot numbers (1) (18), 

(23),  (30), (70)-and (75), appear t o  be the sum of two exponentials such as 

where the time scale of the f i r s t  term is much smaller than the time scale 

of the second term. 

so the combination, K = 11.4, y = a/lO, would not be an unreasonable approx- 

imation. Using these values, we find 

For example, P lo t  (23) seems to  be an extreme case, 

aX.(w) = 3 a / 2  + 50. 
CL+W.' '-5 

showing that the part of L(r), corresponding to  a broad correlation, appears 

as a spike in  the frequency domain. This can be seen most easily w i t h  the 

following plot of the individual parts 

e 
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Since the sharp spike in  the plot of @,(w) corresponds to  the more impor- 

tant infomation, in terms of  broadness of correlation, we see that the 

curve would have to  be established very accurately near the origin, i.e. 

for w -+ 0. 

a sharp spike when working w i t h  experimental data. Therefore, i n  order t o  

reduce errors associated with data reduction in  such a case, one should 

compute R (T) directly from the raw data, rather than from the inverse 

Fourier transforni of @ (w). 

But this  is precisely the area where it is diff icul t  to  resolve 

v 
X y  

Severai of the plots.of the cross-correlation function resemble a one- 

sided exponential, for  example Plot number (28)- Our analytic representa- 

ti03 becomes 
-aT 

e T > O  

the corresponding X-PSD is 

LI 

and using Equation (2) fcr % ( w ) ~  we have 

And on’comparing with Equation (l), we find 
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bra =-tan- l ! ! b  
a 

showing that bn is non-zero €or cross-correlations. 

A more realistic fmictional representation for many of the plotted 

cross-correlation functions is of the form 

See for example, Plots (2), (3),  ( S ) ,  (9), (lo), (15), (19), etc. Follow- 

ing the same procedure as above, we have 

bn = T ~ W ~  

.u 

This last result exhibits the relation between the peak of the curve, %(T), 

given by TO, and the phase angle @n, as one would expect for an even cross- 

correlation function displaced a distance, -c0 , from the origin. 
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The above collection of examples shows that the frequency dependence 

and Cn , corresponding to  the various experimental of the coefficients 

plots should be expected to  be rather weak, since a l l  of the examples varied 

like wn-’. 

x(t)  and y( t )  and therefore s t a t i s t i ca l  properties are t o  be expected when 

analyzing the data. 

That is, many frequencies are present i n  the pressure signals 

One of the more prominent features of much of the cross-correlation 

data, as one compares plots for a succession of station pairs, is the pres- 

ence of one or  two maxima, which seem to be the resul t  signs1 convection 

with sorne mean fluid speed. This can be seen in the sequence of Plots (49) 

through (54) where each combination of stations 10 - 10 to  10 - 5 is  re?- 

resented. As the separation distarce is increased, one first sees a single 

peak for  positive T and then the development of a second peak f c r  negative 

T , with both peaks receding from the origin as the separation distance in- 

creases. 

advanced s t a t e  of development with two dist inct  peaks located a t  the points 

T = 210 microseconk and T = 110 microseconds respectively. 

cal point of view, the occurrence of positive correlation at the two points 

indicates that  information is being convected in  both directions between 

the two stations 10 and 7.  

If we focus our attention on Plot (52) , we see the process in an 

From a physi- 

In a normal turbulent boundary layer with s ta-  

tion 10 upstream from station 7,  one would not expect the upstream propa- 

gation t o  be significant compared with the downstream convection of infor- 
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mation. Therefore, a positive cross-correlation should only appear for  pos- 

i t ive  T , However, in  the present case, stations 10 and 7 probably encom- 

pass the separation point i n  t.he boundary layer and therefore the recircu- 

lating flow prwides a two-way path for the convection of information be- 

tween the two points; i.e., near the model surface. the flow is from 7 to  10 

and further from the surface, the flow is from 10 to  7 .  

The occurrence 0-E two distinct maxima in  a cross-correlation function 

Let can be explained with the aid of the following simple physical model. 

the pressure signal x( t ) ,  a t  the point x in  a fluid, be composed of a lo- 

cally generated signal, f ( t )  , and a transmitted signal, g(t)  , which is de- 

layed an amount, 'tx, and attenuated by a factor of E. 

x(t)  = f ( t )  + c g ( t  - Tcx) 

Likewise, l e t  the pessure  signal y( t )  be 'the opposite canbination, w i t h  

g(t)  being the locally generated signal a t  the point y i n  a fluid,  and f ( t )  

the transmitted signal, which is delayed an anomt, 'tY,'and attenuated by 

the factor E. 

y(t)  = g(t)  + Ef(t  - 

The cross-correlation, %(T), of the two pressure signals, x(t)  and y( t ) ,  

is obtained by forming the mean of the equation 

x(t)y(t)  = [f (t)+&g(t-Tx)] [g(t+r) + Ef (t+T-Ty)] 
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If we assume that the signals f ( t )  and g(t) are generated independently of 

one another, i.e., s ta t i s t ica l ly  independent, and furthemore that the tv~o 

signals are stationary, we then have 

Since R, (T) and qf (T) are autocorrelation functions, they are real ,  symm- 

e t r i c  and positive, and they peak a t  the origin. Therefore,.the f i r s t  term 

has a maximum a t  the point T = - T ~  and the second term has a maximum a t  

T = T 

interpret the peak occurring a t  positive T as a result  of the convection of 

the signal from stations 10 to  7 i n  the outer flow, while the peak occurring 

a t  negative T is the result  of the convection of the signal from stations 7 

t o  10 i n  the recirculating flaw near the model surface. 

. Comparing this  result  w i t h  P lo t  number (SZ), we see that  we can Y 

The above relation for  R (T) w a s  obtained using the assumption that 
Xy 

f ( t )  md g(t) are the only signals that  are produced and that they are s ta-  

t i s t ica l ly  independent, i.e., qg('c) = 0. 

assumption is not entirely correct, since certain portions of the correlated 

pressure signals may be the result  of Flobal fluctuations i n  the fluid,  o r  

fluctuations generated between the two points x and y, which add a common 

signal t o  both x(t)  and y( t ) .  The possibility of a common signal being 

present i n  x(t)  and y(t)  would certainly be greater as the separation dis- 

tance between points x and y increases. Thus, it would be reasonable t o  

In an actual flow process, ttlis 
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to  expect %(T) t o  assume negative values as the separation distance in- 

creases, due to  the non-zero value of Rf (T) i n  the above mathematical 

model 
g 

A development i n  this  direction definitely appears i n  the sequence 

following P lo t  (52), i.e., P lo t  (53) through (56). This observation appears 

to  hold for a l l  of the stations located i n  or  near the separated region, 

while fo r  stations well ahead of the separation points, approximately s ta-  

, tion 9, the picture is quite different. 

(34) is an example where one of the correlated signals is obtained from a 

point well ahead of the separation point. The most distinctive features of 

the sequence is the extreme broadness of the correlations and the nature of 

the trer?d between plots. 

between the pressure signals a t  stations 13 and 10, shows evidence of sig- 

The sequence of P lo t s  (30) through 

Plot number (32), which is a cross-correlation 

nal propagation in  only the upstream direction because of the smallness of 

the correlation for positive T 

both stations are upstream of the separation point and most of the noise 

is generated in  the separated region of the flow f ie ld  (the ms pressure 

fluctuation in  the separated region is generally four o r  five times greater 

than the value in  a turbulent boundary layer). 

in  the portion of the boundary layer near the wall, it is quite possible 

stations 13 and 10 are in  the path of waves propagating upstream from the 

separation point, which would explain the strong correlation for  negative T 

This could very likely be the case, for  

Since the flow is subsonic 
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in  Plot (32). 

being correlated is the result  of propagation upstream, rather than gener- 

ation within the turbulent boundary layer, then only those frequencies w i l l  

be present that can be transmitted along th is  boundary layer. 

If we conclude that a main portion of the signal av l i t ude  

Since certain frequencies would be favored in  propagating along a 

boundary layer, e.g., the Tollmien Schlichting waves i n  a laminar boundary 

layer, one would expect the signals x( t )  and y( t )  t o  exhibit a relatively 

limited range of frequencies; and therefore the corresponding cross power 

spectrum, QV(u), would show a rapid decay i n  magnitude as w increases. 

Referring t o  the examples cited above, we see that this  situation requires 

that the cross-correlation function, Q(T), exhibit a broad correlation. 

But this is exactly what is observed i n  Plots (30) and (31), which show 

correlation intervals mch greater than the plots for data obtained i n  the 

separated region. Therefore, the sequence of Plots (30) through (32), 

which exhibit data obtained from points upstream of the separation point, 

have a common thread o f  consistency. 

. 
(3.10) 



Report No. 507 

Date June 27, 1969 

CROSS PCIWER SPECTRUM VERSUS CROSS-CORRELATION RESULTS 

The answer t o  the &question of which result  is more useful, ultimately lies 

i n  i ts  engineering application. The hybrid system has the capability to  compute 

both s ta t i s t ica l  results independently of the other. 

cf cross-correlations w i t h  the transfomed cross power spectra, t o  help ansxer 

questions regarding data handling. 

This Report compares curves 

Many times a researcher makes use of a resul t  form that is  readily obtain- 

able from a computer, rather than the kind that directly conveys answers to  the 

questions being asked. 

spectra t o  relay convection velociw information. 

A case i n  point, is  the use of narrow band cross power 

The difficulty i n  th i s  app- 

roach is depicted i n  the drawin.g, which shws that the complex vector, made up 

of the real  and imaginary parts as a function of w, produces a l ine i n  three- 

dimensional space. 

The number of times that the complex vector has rotated about the w-axis, i n  

going from w = 0 t o  w = wl, m u s t  be known for  narrow band velocity .calculations. 
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Theory states that the trajectory of the complex vector. produces a simply conn- 

ected line. I t  may be expected that as very small steps in  w are taken, which 

is equivalent t o  using very narrow f i l t e r  bands, the phase angle, 9(w), can be 

followed. The penalty that is usually paid is that the BT product i? permitted 

t o  substantially decrease. This condition of a weak s t a t i s t i ca l  estimate is 

most assuredly the worst condition of the two. 

In solving the inverse Fourier transform for R ~ ( T ) ,  as follows, 

the complex value of QV(w) a t  each w is a l l  that  is required. The number of 

times that the complex vector has rotated about the w-axis i n  a r r i - h g  a t  a par- 

t icular w, does not enter into the equation. The computation of R x y ( ~ ) ,  which 

involves averaging over w , produces several advantages, plus removing the dif f - 
iculty of calculating the narrow band convection velocity i n  the frequency do- 

main. 

For real  functions such as fluctuating pressure signals, the cross power 

spect.rum Cpw(w), must be Hermitian. 

even and that the imaginary part is odd. 

tates that as w approaches 0, the phase angle 0 (w) , must also go t o  0. 

erally advanced concept, that radiation is tiking place in the physical process 

a t  the low frequencies, may not be the case. 

This fact  implies that the real  part is 

The imaginary part, being odd, dic- 

The gen- 
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The cross-correlation function is a rea l  quantity and is therefore easier 

to  interpret i n  terms of the physical process; whereas the cross power spectrum 

is a complex quantity and therefore is  more d i f f icu l t  t o  interpret. 

abi l i ty  that  two different processes exist  i n  the flow *or two different veloc- 

i t i e s  is much greater than that they have different frequency components. 

cross-correlation function which shows the tau or velocity decmpostion, is much 

more assessable by just looking a t  three-dimensional plots. 

The prob- 

The 

The present experimental data indicates that  a seventh o r  eighth order 

transfer function would satisfactorily describe each of the flow processes. 

the separated flow region, the curves are double humped, w i t h  one peak occurring 

for positive tau and the other f o r  negative tau. 

the recirculation region, where there is both downstream and upstream flow, The 

sharpness of the two peaks indicates that  the frequency components are confined 

t o  relatively narrow bandwidths, or  that  the gas structure is confined to  small 

particles. 

In 

This could. make good sense i n  

The slow decay of the single cross-correlation peak for  the attached flow, 

is also readily disceriiible. 

cate that large gas structures exist  i n  the boundary layer. 

The large cross-correlation values seem t o  indi- 

Experimental data has shown tltat the cross power spectrum has completed sev- 

eral  revolutions and has substantially decayed in. anplitude for  large w. 

frequency spectrum between 1 2  md 20,000 Hz is broker: up into one-third octave 

If the 

(4.2) 
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. .  

f i l t e r  bands, and if the phase uniformly changes with the logarithm of the fre- 

quency, then the phase change between the f i l t e r  center frequencies should be 

approximately 22'. 

ious and becomes even more diff icul t  i f  the BT product is allowed to  decrease. 

Once again, the averaging over frequency, to  arrive a t  a tau or  velocity decom- 

position, overcomes the above pFoblem and the problem of the short vector Lengths. 

Keeping track of the approximately 33 steps i n  6(w) is  ted- 

In general, the turbulent flow upstream of two pressure transducers, is com- 

plicated and may be both dispursive and diffusive i n  nature. 

ity, which is  a l l  that can be measured between two points, does not give enough 

irxormation about the process. 

or more spatial  cross-correlation points can, for  instance, give the f lu id ' s  

acceleration. 

The average veloc- 

Computer programs that take into account three 

The cross power spectral density matrix, for  a randomly varying pressure 

field,  [QPp(iw)], has distinct advantages over i t s  counterpart cross-correlation 

matrix, as an input for structural response calculations. 
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EQUATION FOR FOURIER TRAYSFOWING 

CROSS POWER SPECTRAL DENSITIES - 
The purpose of this section is to derive an equation for the inverse Fourier 

transformation of one- third octave cross power s y e c t m s  . This development is  

along the lines suggested by Mr. Luke Schutzenhofer of NASA, t o  obtain experi- 

mental transformed. cross power spectra, to  anpare with directly derived cross- 

correlations. 

The experimental results show that the a p p r r c ~  taken worked successfully. 

The numerical problem' associated' with the function sin x/x .for .small x w a s '  e l i -  

minated by r e p k i n g  it with its proper limit. The transformed cross power 

spectra were found t o  not oscil late and to decay regularly due to  the fact  that  

the cross power spectra diminished to  very small amplitudes for large c' .. Exper- 

imentally, it is shown that the one-third octave bandwidths are sufficiently 

narrow for  the accurate transformation from the frequency t o  the'time domain. 

This result  can probably be made t o  apply in  the other direction through induc- 

tive reasoning 

The. equation used for the inverse Fourier transform w i l l  be derived, md 

an eqwation that holds promise of being simpler w i l l  be discussed a t  the end of 

this section. The cross power sj+ctral density function is  a complex quantity 

and may be expressed in general as 
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The one-third octave, cross power spectra produced by the computer are composed 

of a modulus M(fc) and a phase angle e(fc) a t  cach f i l t e r  center frequency. The 

above continuous function may be modified to  apply to  the discrete case by using 

a truncated Taylor series expansion. 

If Equation (1) is differentiated and substituted into Equation (Z), the cross 

powei spectra becomes 

where a = M’ (Cc) and B = e’(fc). The addition of a third term t o  the above equa- 

tion, which is small, produces 

O,(f> = p(fc) * aAf] e ie (fc) + iBQ,(fc)Af + aAfeie (fc3iBAf 

(4) 

This equation may be collected to  give 

Qxy(f) = v(fc)  + c l A f ]  e ie(f c ) + p(fc) + aAf] e ie Cfc) -@Af 

= @(fc] + aAf] e [1 + i B A f ]  (5) 

If L3Af is sma3.1 relative to.unity, the following form is obtained and thus 

was used i-ci *&e digi ta l  program. 
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The inverse Fourier transformation program prints out B, and simple calcu- 

lations showed that the experimental product f inal ly  reaches unity for  the 

20,000 Hz center frequency f i l t e r .  

than one radian or 60 (degrees). 

In conclusion, B A f  was substantially less 

Analytical cross power spectra could be generated and a parmetric stu6y 

psrfomed of A f  versus 8. 

(5.2) 
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Let f = fc, the modulus becomes: 

Let f = fc-Af/2, the modclus becomes: 

M (fc) + (-a) (f c- A f  / 2 - f c) = M (f c) +aAf / 2 

(5.3) 



BAGAiiOFF ASSOCIATES, INC. 
Report Xc. SC’P 

Date June 27, 1969 - 

Integrating by parts, the narrowband cross-correlation reduces to: 

i( (f - fc) +2mf  1 fc+Af/2 

1 1  fc-Af/2 

a 
+ (($+2ST)2 e 

1 1  + ia  (e - e  
(f3+2.rr.r) 2 i  (@+21~.c)Af/2 
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The broadband cross-correlation can be abtained as the sum of these bands. 

3 aAf cos(B+2m)Af/2 a sin(B+2m)Af/2 
2 (B+Zm)Af/Z (B+2m) 2Af/2 

+ c  

sin(8 ( f c ) + 2 ~ ~ f c }  

Equation (1) above may be expanded to  th.e. foll.owing generalized form: 

P 

c=l %(I-) = c fCv cos(brfc.r) + cv(error) ~ o s ( 2 m - f ~ ~ )  (13) 

where 



BAWYOFF ASSOCIAi :E INC. 
Report So. .5C7 

Date June 27, 1969 

3 sine(fc) s i n  (13+2m) A f  / 2 
(f3+2n~) A f /  2 

Qv = [M(f,) 

aAf cos (f3+2nr)Af/2 a sin(B+Zn-r)Af/Z 
Qw(error) = [ 3 case (fc). 

2 (B+Zm) A f /  2 (B+Zn-r) 2Af/2 

Equation (12) was programmed, but the following equation may produce an 

even more accurate transformation. 

third octave spectrums consisting of a complex quantity gk in discrete fre- 

quency steps fk = f o ( l  4- k n / 6 )  and A f  = a / 6  fo. 

at the center of the k th filter band, and the slope information skc can be com- 

puted from the adjacent band values. 

The cross-cofrelation system produces one- 

The value gk is a constant 

The truncated Taylor serfes for  s becomes 

By substituting s into the inverse Fourier integral , the cross-coyrelation 

becomes 
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Both the first and l a s t  integrals i n  Equation (15) produce algebraic func- 

tions of the form s in  x/x, and the function for  the second integral is obtained 

by differentiating the first algebraic function. 
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DATA PROCESSING METHODS 

This Report contains 1 2 1  inverse transformed, cross power spectra, 

of which 61 are compared with directly computed cross-correlations. The 

following four digi ta l  programs had t o  be w i t t e n  t o  work i n  conjunction 

with the hybrid cross-correlation system to  make these data compai5sons 

possible. 

subsequently to  run hundreds of additional comparisons. 

I t  w i l l  be a relatively easy matter to  refine the programs and 

Cross power program with ins tmenta t ion  corrections for 

CP-100 and FR-1200 recorders. 

Automztic plotting program for  the directly reduced cross- 

correlations. 

Program for  numerically performing the inverse Fourier 

transform on one-third octave cross power data. 

Plotting program f or  indirectly computed cross-correlations. 

In mother section, the significance of the curves, as related to 

the aerodynamics, is  discussed. 

curves are surprisingly good, although the amplitude scales are differ-  

ent. Steps are being taken t o  correct the digi ta l  programs by applying 

the proper scalers for  future analysis. 

The comparisons of the shapes of the 
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In the process of normalizing the direct  and indirect cross-correla- 

tions, different scalers were used. The direct  cross-correlations were 

normalized by the square root of the product of the mean square values, 

while the indirect cross-correlations were normalized by the sum of the 

narrow band cross power spectra moduli. 

inally written t o  transform analytical cross power spectra and the cap- 

abil i ty to compute the mean square values has not been incorporated as 

yet, Mathematical expressions for &lese two forms of normalization are 

shown respectively i n  Equations (4) and (6) of Section (2.0). 

The numerical program was orig- 

One can show that the two scalers recbce t o  the same number, when 

the Fourier coefficients associated with t!e two scalers are the same. 

Experimentally, this ccndition can be verified by observing Plot nmber 

(15), where the two curves are of equal amplitude because 0% the small 

transducer separation. 

tion, dramatically shows that the frequency composition of the downstream 

transducer signal has changed significantly. 

ization, based on statistics, prodgce striking results when compared. 

Plot nmber (16), for  a sl ightly larger separa- 

These two forms of normal- 

A sub-routine i n  the digi ta l  program determines the AT increments 

for  the numerical transform. 

which the modulus has the largest peak. 

of the period. 

I t  does this by noting the frequency a t  

The program then computes AT = "005 

The experimental da,ta show that at  times the modulus 
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peaks are a t  a very low frequency and correspondingly, the AT increments 

are fa i r ly  large. 

ture work. 

This sl ight difficulty w i l l  also be refined for  fu- 

The indirect autocorrelations are presented, while the direct coun- 

terparts are not presented, because they were not reduced i n  previous 

work. 

curves and the matrix grids may be consulted to  identify the remaining 

ones. 

litude, while the T = 0 value is  one-fourth of i t s  amplitmle. 

tently, a one-half constant was intrduced into the numerical program, 

along with the normalization scaler. 

an additional one-half factor was applied for  the T = 0 value. 

nmber (70) on, this  later error was corrected. For Plot numbers (42) 

through (46), the cross power spectral analyses were repeated, because 

the operator questioned the set-up. 

cross-correlations superimpose perfectly, while the autocorrelations differ.  

Plot numbers (1) and (8) are representative of the autocorrelation 

The P ? ( T )  values can be seen to  be one-half of their  proper amp- 

Inadver- 

In the course of plotting the data, 

From P lo t  

The experimental data show that the 
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